Smooth functional tempering for nonlinear differential equation models
نویسندگان
چکیده
Differential equations are used in modeling diverse system behaviors in a wide variety of sciences. Methods for estimating the differential equation parameters traditionally depend on the inclusion of initial system states and numerically solving the equations. This paper presents Smooth Functional Tempering, a new population Markov Chain Monte Carlo approach for posterior estimation of parameters. The proposed method borrows insights from parallel tempering and model based smoothing to define a sequence of approximations to the posterior. The tempered approximations depend on relaxations of the solution to the differential equation model, reducing the need for estimating the initial system states and obtaining a numerical differential equation solution. Rather than tempering via approximations to the posterior that are more heavily rooted in the prior, this new method tempers towards data features. Using our proposed approach, we observed faster convergence and robustness to both initial values and prior distributions that do not reflect the features of the data. Two variations of the method are proposed and their performance is examined through simulation studies and a real application to the chemical reaction dynamics of producing nylon.
منابع مشابه
Comparison between linear and nonlinear models for surge motion of TLP
Tension-Leg Platform (TLP) is a vertically moored floating structure. The platform is permanently mooredby tendons. Surge equation of motion of TLP is highly nonlinear because of large displacement and it should be solved with perturbation parameter in time domain. This paper compare the dynamic motion responses of a TLP in regular sea waves obtained by applying three method in time domain usin...
متن کاملConstuction of solitary solutions for nonlinear differential-difference equations via Adomain decomposition method
Here, Adomian decomposition method has been used for finding approximateand numerical solutions of nonlinear differential difference equations arising inmathematical physics. Two models of special interest in physics, namely, theHybrid nonlinear differential difference equation and Relativistic Toda couplednonlinear differential-difference equation are chosen to illustrate the validity andthe g...
متن کاملApplication of the Kudryashov method and the functional variable method for the complex KdV equation
In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.
متن کاملFriction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique
Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in control systems which happen frequently. The proposed approach works for n...
متن کاملDifferential transformation method for solving a neutral functional-differential equation with proportional delays
In this article differential transformation method (DTMs) has been used to solve neutral functional-differential equations with proportional delays. The method can simply be applied to many linear and nonlinear problems and is capable of reducing the size of computational work while still providing the series solution with fast convergence rate. Exact solutions can also be obtained from the kno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics and Computing
دوره 22 شماره
صفحات -
تاریخ انتشار 2012